Skip to content
Need Assistance? Call 778-775-4122
Wish Lists Cart
0 items

News

Typical Off Grid Solar System and its components

19 May 2023

Typical off-grid solar system and what you will need

Typical Off Grid System

 

For most off-grid systems it really comes down to four main components – solar panels, charger controller, inverter and the battery bank. There are a number of different options etc. that you may also want to consider i.e. adding a generator which is highly recommended for off grid living in Canada.

Before you start planning your solar system you will need to work out what your current or planned electricity usage will be. Here is a tool from FortisBC which will help you work it out. We will need this calculation to work out what you will need.

https://www.fortisbc.com/accounts-billing/billing-rates/understanding-your-bill-electricity/managing-your-electricity-use/electricity-calculator

 

Solar Panels & Mounting

Starting with the most obvious part of an off-grid solar system are the solar panels. The solar panel takes the sun's rays and converts it into electricity. (Direct Current (DC). They come in many different sizes, looks and performances and can be installed on the roof or ground mounted. Depending on how much electricity you think you will be consuming, roof pitch, shadows, control panel size etc. will depend on the number of panel's you will need. A typical house will need around 20-30 panels to power the property. Many of you may be aware of solar tiles which look like normal house tiles and look extremely appealing. However, there are a number of downsides to this type of solar solution to be aware of. Firstly they are more expensive to purchase and more expensive to install. There have been many reported install problems and as a result the anticipated growth of this solution just has not happened as anticipated.

 

Solar Panel comparison charts

https://cdnsolar.ca/pages/solar-panel-comparison

Solar panels are connected in series strings (limited by the max input voltage), then the various strings of solar panels can be connected in parallel to create a substantial array (limited by power or current). This method simplifies the solar array output down to as few conductors as possible.

 

Solar module mounting is the next consideration.

There are two common methods for mounting solar modules and the selection is usually dependent on application or available mounting space:

  • Roof Mount - Mounting the solar array on a home or structure

    Roof mounts use parallel rails secured to the roof system with feet secured to roof trusses or cross members with the solar panels set on top of these rails and secured with a clamp type system. Roof mounting solar panels have the advantage of using an existing flat roof area. Roof mounts can have the disadvantage of not optimizing the solar panel angle in relation to the southern horizon thus reducing the potential energy production or the array.

  • Ground Mount - Mounting the solar array on concrete piers closer to the ground for stability

    Linear ground mounts involve a lattice of vertical and horizontal steel poles with parallel rails – usually aluminum. The solar panels are then secured to the aluminum parallel rails. The panels are arranged row and column style and the entire array can be angled towards the southern horizon optimizing for maximum energy production. Linear ground mounts can be cleaned easily like top of pole mounts and can also be cleared of snow more easily than roof mounted arrays. Linear ground mounts can be used for large solar arrays with the only limitation being the available ground space.

To work out how many solar panels you will need to meet your electricity usage please review the Grid Tie blog post which tells you how to work it out and also how to calculate the rook area you will need.

 

Charge Controller

The charge controller is the device that manages the flow of energy from the solar panels to the battery. Charge controllers make sure batteries are charged properly and are not overcharged, which is important for the longevity of the battery bank. There are two main types of charge controllers, MPPT (Maximum Power Point Tracking) and PWM (Pulse Width Modulation).

MPPT charge controllers are different in the fact that the input voltage from the solar panels needs to be 30% over the voltage of the battery voltage (up to the limit of the charge controller), so it doesn’t matter as much what voltage solar panel is used with the system.

MPPT charge controllers are more efficient due to their ability to track the maximum point of power coming from the solar panels and deliver it to the batteries. It takes a higher voltage / lower current input and converts it to lower voltage / higher current output for the same amount of power. Given this fact, MPPTs very accurately control the amount of power that is sent to the batteries which is important when batteries get full and try to satisfy system loads. The main selling point of using an MPPT controller is their ability to capture the most power from the solar array at any given moment contrary to limited input of a PWM controller. It is possible for a PWM to deliver as much power as an MPPT, but it will never deliver more power than an MPPT. For those reasons, MPPTs are usually the norm when choosing a charge controller for a solar system design and we highly recommend choosing this type of solution.

 https://cdnsolar.ca/collections/charge-controllers

PWM charge controllers use pulse modulation to turn on and off the rate at which the energy from the solar panels is being sent to the batteries. When using PWM charge controllers it is essential for the nominal voltage of the panels to match the nominal voltage of the batteries. For instance, if the system is using 12 volts panels the battery bank needs to be 12 volts. There is not a lot of control on managing the power coming from the panels using a PWM, it’s dumping the power into the batteries. PWMs offer limited input compared to an MPPT controller.

 

Inverter

The next component in an off-grid solar system design would be an inverter. In nearly all off-grid solar systems, the inverter is a battery-based inverter. The inverter’s purpose is to take DC power that is stored in the battery bank and convert it to usable AC power and send it to your loads so it can be used in the same manner as plugging into an AC outlet in a home. Inverters come in varied sizes which can accommodate smaller loads or larger loads depending on the off-grid loads required. Another consideration is making sure the inverter can handle all the loads running simultaneously in the system.

When all the system loads that are present in the off-grid system are added up, it will determine that maximum amount the inverter needs to be able to handle. 

Knowing your system loads for a specific system will allow CDN Solar to help you design a system that can handle all the loads required.

Another important fact is that the inverter needs to match “voltage-wise” the system in which it is being used. For instance, a 12-volt inverter cannot be used with a 24-volt battery bank – it must be used with a 12-volt battery bank. Unlike charge controllers, the voltage on an inverter cannot be changed as it is fixed and must be matched with the battery voltage of the system.

Given that information, it’s important to choose an inverter wisely when designing a system especially if expanding the system is in the plans. Choosing an inverter is a crucial decision to make in the beginning of your planning process.

In most off-grid systems we choose to use inverter chargers. Notice we said inverter “charger”. So, we already know what a regular inverter does. What does an inverter charger do? The inverter charger acts the same as a regular inverter, but doubles as a charger. That means that the inverter not only has an output, but it also has an input.

This is important because this allows the system to use an external power source such as a gas generator to power the system loads and stops drawing power from the battery bank. Once the system loads are satisfied the excess power that is being input into the system from the external power source is then being used to charge the battery bank. Going with an inverter charger allows redundancy in the system which is needed if there are several cloudy days and the solar array cannot provide enough power to charge the battery bank.

https://cdnsolar.ca/collections/victron-inverter-chargers

https://cdnsolar.ca/collections/hybrid-inverters

 

Hybrid Inverter System

Most hybrid inverters are all-in-one units, meaning there are inputs for solar, grid, loads, generator, and battery all built into one inverter. A hybrid inverter system integrates the best of both MPPT charge controller and Inverter/charger worlds for a very custom and flexible solution. These types of systems are commonly referred to as hybrid inverters or ESS - energy storage system. Hybrid inverters are often used in applications where a simple easy to install and all-inclusive product is desirable. They can manage PV production and battery charging like a charge controller but will also provide power output from batteries and/or PV just like an off-grid inverter. Given the flexible nature of hybrid systems, this is often the best choice for flexible and dynamic solutions. Being that these solutions are also quite modern, they work very cohesively with lithium battery solutions. Most will also allow for charging batteries from a generator (or Grid where applicable).

https://cdnsolar.ca/collections/off-grid-solar-cabin-kits

 

Batteries

The last main component in the solar system is the battery bank, which is one of the most important considerations and the most expensive. In the solar power industry, there are two common battery chemistries – lead acid and lithium. The latest electrical code in Canada now states that the batteries cannot be located in the home. So bare this in mind when planning your system.

Lithium Batteries

Lithium Iron Phosphate (LiFePO4) is the chemistry makeup of most lithium batteries used in the solar power industry. Lithium batteries are significantly different than flooded lead-acid and AGM batteries in several different ways, not only in size/weight, but also in how they can be charged and discharged. Lithium Iron Phosphate is an extremely safe chemistry, it does not off-gas and can be stored without the need for ventilation. Lithium batteries are completely maintenance-free and do not need to be fully charged, unlike lead-acid batteries. LiFePO4 chemistry is also designed specifically for a significant amount of charging cycles. These characteristics make lithium batteries extremely advantageous for off-grid solar applications. Another advantage is that lithium batteries have a built-in BMS (battery management system). The BMS is constantly monitoring the operating state of the battery. This means if the battery is being over-discharged or if the battery is too hot or cold, the BMS will force the battery to shut down until those parameter violations have been resolved. Think of BMS as a level of protection for the batteries, which makes it difficult to damage them.

Another advantage of lithium is that you can stack or expand an existing battery bank without affecting the lifespan of the existing bank. Adding batteries to an existing lead acid battery bank will ultimately result in premature failure of the entire battery bank. Lithium batteries can also be purchased in 12v, 24v and 48v variations so you can parallel them easily with conventional system voltages. This is important because if a battery is forced into shut down mode by the BMS, the entire bank does not necessarily have to shut down.

In all facets, lithium batteries are significantly superior to lead acid batteries. Depth of discharge, the number of charge cycles, safe chemistry and a built-in BMS deal a knockout blow to lead acid batteries in the long run. Not to mention lithium batteries also charge faster and deliver a substantial amount of power continuously without damaging the battery. Also, all reputable manufacturers are offering warranties on lithium batteries for around 5-10 years which is substantially more than warranties given on lead acid batteries. One more advantage is that the space needed and weight of a lithium battery bank is much less than that of a lead acid battery bank.

Generator (Highly Recommended)

In Canada you are going to need a generator to make up for los of sun and cloudy days during the winter months. This is there as a backup and can be connected to your solar system to charge up your battery bank also.

https://cdnsolar.ca/pages/power-generators

 

If you have any questions or need advice on  designing your solar system then please get in-touch with us. We ship Solar DIY solutions across Canada.

 

 

Prev Post
Next Post

Thank you for subscribing

This email has already been registered!

Shop the look

View Product

Edit Option
Terms & Conditions
this is just a warning
Shopping Cart
0 items